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A FORMAL TOTAL SYNTHESIS OF DACTYLOL
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Summary: The tetracyclic epoxide 16 was prepared in stereocontrolled fashion from 4,4-

dimethylcyciohexanone, the key steps being Saegusa ring expansion of its silyl enol ether
to 5, ortho ester Claisen rearrangement of 7, and cyclization of 9 without rupture of the
three-membered ring. Epoxide 16 had previously been transformed into dactylol, thus com-

pleting the formal total synthesis.

Dactylol (1), an irregular isoprenoid sesquiterpene alcohol isolated in 1978 from the

Caribbean sea hare Apiysia dactylome&bl belongs to an expanding family of architecturally

related natural products that also includes poitediol (2)2*3 and precapnelladiene (3).45

Structurally, these substances feature a functionalized cyclooctane ring annealed to a

smaller cycle; consequently, they can be regarded as lower homologues of the ophiobo11ns.6

OH

n
Ol

The arrangement of atoms in 1-3, including appropriate interlocking of the chiral centers,
can in principle be accommodated by several tactical approaches. As concerns the scheme
described herein, an africane nuc]eus7 is first elaborated. Since epoxide 16 has previously
been converted in two steps to 1,8 a formal total synthesis of dacty151 has been success-
fully achieved.9

4,4-Dimethylicyclohexanone (4), obtained by hydrogenation10

1

of the readily available

a,R-unsaturated ketone, was efficiently (71% overall) ring expanded to cyclohepte-

4983



4984

1. Et3N, Me,ySiCl 0 1 HO~OH, H*
2 a-Buli, 2. C HZnl,
Cl,CHCH, CHa1,
% 3. A, toluene H 3 H,0*
4 s

1. LICA, CH3CHO
2. Acy0, Et3N NaBH,
3 DBU, CgHg CeCly
A
8a, R=H
b, R= co—<:>—ch
1.CHyC(OCaHs) 3 , Hu,
CH4CH,COOH, A 7 COOH 1 (cocuy, ol
PP ePTE—— N
2. KOH 2. SnClg, ~ et
CICH,CH,C
0°C

2

none 512 by the Saegusa pr‘ocedure.]3 The stage was now set for introduction of the

cyclopropane ring. Of the several methods examined, the most expedient consisted of
ketalization (83%, no double bond migration), Simmons~Smith cyclopropanation (92%),.'4
and hydrolytic removal of the ethylenedioxy group (100%).

With the seven-membered ring now fully elaborated, efforts were next focused on appro-
priate cyclopentannulation in the vicinity of the carbonyl group without cleavage of the con-
Jugated cyclopropane unit. Aldol condensation of the 1ithium enolate of 6 with acetaldehyde
produced a B-hydroxy ketone (79%), which was directly acetylated (96%) and subjected to 8-
elimination (93%). The anti stereochemistry of the ethylidine methyl group in 7 was as-
certained on the basis of the chemical shift of its olefinic proton (§ 6.83).1°

Reduction of 7 with the Luche reagent]6 gave rise predominantly to B-alcohol 8a. This
relevant stereochemical issue was elucidated by X~ray crystal structure analysis of the p-
nitrobenzoate (8!)).17 This result reveals that the o face of the carbonyl carbon is more
sterically accessible, a fact that will be used to advantage subsequently. Heating of 8a
with triethyl orthoacetate 1n the presence of propionic acid delivered a stereochemically
homogeneous ester (72%) whose saponificatfon furnished 9. The configuration of the side-

chain methyl group has been inferred from the usual stereocelectronic considerations.'® wWith
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9 in hand, the acid chloride was prepared and this intermediate was exposed to the action of
stannic chloride in anhydrous 1,2-dichloroethane solution at 0°C. As anticipated, a mixture
of cyclopentenones (96%) resulted: 10 (12%), 11 (24%), 12 (64%). The structural assign-
ments to these isomers follow from their respective spectral properties, the independent
conversion of ]0]9 to epoxy alcohol 13, and confirmatory X-ray analysis of this tetracyclic
compound.20
Chromatographic separation of the trio of enones proved not to be necessary, since
standard dithioketalfzation proceeded to give an 83:17 mixture of 14 and 15. Only after
sequential Raney nickel desulfurization and epoxidation was silica gel chromatography
deployed. The peracid likewise approached the 7 bond from the o face to deliver predomi~
nantly epoxide 16 (27.2% overall), whose high field TH NMR spectrum was identical to that
provided by Professor Matsumoto., The faci1ity with which 16 undergoes Lewis acid-catalyzed
isomerization with cleavage of both three-membered rings has been earlier detailed by the
Matsumoto group.9
Thus, 1t 1s now possible to view 5/8-fused sesquiterpenes such as 1-3 as being usefully
accessible from perhydroazulenoid precursors. This principle apparently already operates in

nature, with humuiene serving as the starting point of biosynthetic construction.g’2]
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